top of page


Showcases

 

Our add-on pulse compressors are compatible with different ultrafast industrial lasers. Here we experimentally prove this compatibility and demonstrate outstanding performance.


MIKS1_S @ Pharos (Light Conversion)

In this section we present the performance of our MIKS1_S module with PHAROS driver laser. The compressed output pulses reach 40 fs in duration with over 90 % power transmission. Starting from 230 fs input pulses this corresponds to an increase in peak power up to 2 GW. Text-book-like self-phase modulated spectrum and excellent pulse compression are shown in the pictures below. 

Input Pharos: 230 fs, 95 uJ, 9.5 W
Output MIKS1_S: 40 fs, 89 uJ, 8.9 W


 

Input spectrum vs. output spectrum

Multipass Spectral Broadening and Pulse

Input autocorrelation vs output autocorrelation

MIKS1_M_Light Conversion Pharos_APE_femt

Positional stability

MIKS1_M_Light Conversion Pharos_Position

The centroid of the beam cross section was tracked over 1 hour ca. 1 meter behind the output aperture of MIKS1_S. Note that the standard deviation of the centroid fluctuation is smaller than 1% of the beam diameter (1/e2).

Output power stability

MIKS1_M_Light Conversion Pharos_Output p

Output spectrum stability

MIKS1_M_Light Conversion Pharos_Output s
MIKS1_S @ Pharos (Light Conversion)

MIKS1_S @ TruMicro 2030 (Trumpf Laser)

Here we show the performance of our MIKS1_S module driven by TruMicro2030 fiber laser. By increasing the bandwidth to over 45 nm, a pulse duration of 52 fs could be achieved with a transmission of over 90%.

Input TruMicro 2030: 950 fs, 50 uJ, 10 W

Output MIKS1_S: 52 fs, 45 uJ, 9 W

Input spectrum vs. output spectrum

MIKS1_M_Trumpf Laser_TruMicor 2030_spect

Input autocorrelation vs. output autocorrelation

MIKS1_M_Trumpf Laser_TruMicor 2030_APE_f
MIKS1_M @ TruMicro 2030 (Trumpf Laser)
MIKS1_S @ FemtoFiber vario 1030 (TOPTICA Photonics)

MIKS1_S @ FemtoFiber vario 1030 (TOPTICA Photonics)

In this section we present the performance of our MIKS1_S module with  FemtoFiber vario 1030 driver laser. The compressed output pulses reach 40 fs in duration with over 90 % power transmission. Starting from 200 fs input pulses this corresponds to an increase in peak power of factor 4. The self-phase modulated spectrum and the pulse compression are shown in the graphs below. 

Input FemtoFiber Vario: 200 fs, 10 μJ, 10 W
Output MIKS1_S: 40 fs,   9 μJ,   9 W

 

Input spectrum vs. output spectrum

MIKS1_M_TOPTICA Photonics_FemtoFiber var

Input autocorrelation vs. output autocorrelation

MIKS1_M_TOPTICA Photonics_FemtoFiber var

MIKS1_S @ neoMOS SMAART (neoLASE)

Here we show the performance of our MIKS1_S module driven by neoLASE neoMOS SMAARTlaser. A peak power increase by a factor of seven could be achieved with an efficiency of over 90%. The self-phase modulated spectrum and the pulse compression are shown in the graphs below. 

Input neoMOS SMAART: 900 fs, 170 μJ, 52 W
Output MIKS1_S: 100 fs,   155 μJ,   47 W

Input spectrum vs. output spectrum

MIKS1_M_neoLASE_neoMOS SMAART_spectrum_m

Input autocorrelation vs. output autocorrelation

MIKS1_M_neoLASE_neoMOS SMAART_autocorrel
MIKS1_S @ neoMOS SMAART

MIKS1_S @ INDYLIT 10 (Litilit)

Here we show the performance of our MIKS1_S module driven by  INDYLIT 10 solid state laser.  The compressed output pulses reach 50 fs in duration with over 90 % power transmission. Starting from 420 fs input pulses this corresponds to an increase in peak power of factor 6. The self-phase modulated spectrum and the pulse compression are shown in the graphs below. 

Input INDYLIT 10: 420 fs, 100 μJ, 10 W

Output MIKS1_S: 50 fs,   93 μJ,   9.3 W

Input spectrum vs. output spectrum

MIKS1_M_ Litilit_INDYLIT 10_spectrum_mul

Input autocorrelation vs. output autocorrelation

MIKS1_M_ Litilit_INDYLIT 10_autocorrelat
MIKS1_S @ INDYLIT 10 (Litilit)

MIKS1_S @ Carbide (Light Conversion)


Here we show the performance of our MIKS1_S module driven by Carbide laser. A peak power increase by a factor of 4 could be achieved with an efficiency of over 98%. The self-phase modulated spectrum and the pulse compression are shown in the graphs below. 

Input Carbide: 200 fs, 15 μJ, 6 W

Output MIKS1_S: 52 fs,   14.7 μJ,   5.9 W

Input spectrum vs. output spectrum

Spectrum Comparision_edited.jpg

Input autocorrelation vs. output autocorrelation

Autocorrelation Comparision Trace_edited

Output beam profile

RayCi2.jpg
MIKS1_S @ Carbide (Light Conversion)
MIKS1_S @ FemtoLux 30 (EKSPLA)

MIKS1_S @ FemtoLux 30 (EKSPLA)


Here we show the performance of our MIKS1_S module driven by EKSPLA laser. A peak power increase by a factor of 7 could be achieved with an efficiency of over 90%. The self-phase modulated spectrum and the pulse compression are shown in the graphs below. 

Input FemtoLux 30: 350 fs, 100 μJ, 20 W

Output MIKS1_S: 50 fs,   90 μJ,   18 W

Input spectrum vs. output spectrum

Spectra_Campare Revision 2_edited.jpg

Typical FROG trace

FROG_50fs (4)_edited.jpg

Output beam profile

Beam profile after MPC_290mm_100uJ_20220822.jpg
Z scan MPC_edited.jpg

MIKS1_S @ Monaco (Coherent)

Here we show the performance of our MIKS1_S module driven by Monaco femtosecond laser. A peak power increase by a factor of 6 could be achieved with an efficiency of over 95%. The self-phase modulated spectrum and the pulse compression are shown in the graphs below. 

Input Carbide: 320 fs, 80 μJ, 60 W

Output MIKS1_S: 52 fs,   77 μJ,   58 W

Input spectrum vs. output spectrum

Spectrum_Monaco_edited.jpg

Input autocorrelation vs. output autocorrelation

Autocorrelation_Monaco_edited.jpg

Output beam profile

M2_monaco_edited.jpg
MIKS1_S @ Monaco (Coherent)

MIKS1_L @ A2000 (Amphos)

Here we show the performance of our MIKS1_L module driven by  Amphos laser.  The compressed output pulses reach 82 fs in duration with 85 % power transmission. Starting from 1 ps input pulses this corresponds to an increase in peak power of factor 10. The self-phase modulated spectrum and the pulse compression are shown in the graphs below. 

Input Amphos: 1 ps, 1 mJ, 100 W

Output MIKS1_S: 82 fs,   850 μJ,   85 W

Input spectrum vs. output spectrum

MIKS1_L _ A2000 (Amphos)_Show Case_Spect

Input autocorrelation vs. output autocorrelation

MIKS1_L _ A2000 (Amphos)_Show Case_Autoc

Output beam profile

100 energy beam profile_edited.jpg
MIKS1_L @ A2000 (Amphos)

MIKS12 @ Pharos (Light Conversion)

In this section we present the performance of our MIKS12 module with PHAROS driver laser. The compressed output pulses reach sub 20 fs in duration with over 85 % power transmission. By increasing the bandwidth to over 200 nm, a pulse duration of 17 fs could be achieved.

 

Input PHAROS: 260 fs, 20 uJ, 60 kHz

Output MIKS12: 17 fs, 16.4 uJ, 60 kHz

Output spectrum

MIKS12_Light Conversion_Pharos_spectrum_

Output autocorrelation

MIKS12_Light Conversion_Pharos_autocorre
MIKS12 @ Pharos (Light Conversion)

MIKS12_UP @ Pharos (Light Conversion)

Here we show the performance of our MIKS12_UP module driven by  Pharos laser.  The compressed output pulses reach 7 fs in duration with 83 % power transmission. Starting from 230 fs input pulses this corresponds to an increase in peak power of factor 27. The self-phase modulated spectrum and the pulse compression are shown in the graphs below. 

Input Pharos: 230 fs, 12 uJ, 1 MHz

Output MIKS12_UP: 7 fs, 10 uJ, 1 MHz

Input spectrum vs. output spectrum

MIKS12_UP _ Pharos (Light Conversion)_Sp

Input autocorrelation vs. output autocorrelation

MIKS12_UP _ Pharos (Light Conversion)_Au
MIKS12_UP @ Pharos (Light Conversion)

MIKS1_XS @ TruMicro 2030 (Trumpf Laser)

Here we show the performance of our MIKS1_XS module driven by TruMicro 2030 femtosecond laser. A peak power increase by a factor of 3.5 could be achieved with an efficiency of over 80%. The self-phase modulated spectrum and the pulse compression are shown in the graphs below. 

Input TruMicro 2030: 280 fs, 1 uJ, 1.2 W, 1 MHz

Output MIKS1_XS: 61 fs, 0.8 uJ, 0.9 W, 1 MHz

Input spectrum vs. output spectrum

MIKS1_XS _ TruMicro 2030 (Trumpf Laser)_

Input autocorrelation vs. output autocorrelation

MIKS1_XS _ TruMicro 2030 (Trumpf Laser)_
MIKS1_XS @ TruMicro 2030 (Trumpf Laser)

MIKS1_S @ Dira 200-100 (Trumpf Scientific Laser)

In the following we present the results obtained from our MIKS1_S module, which was powered by the Dira 200-100 femtosecond laser. We successfully achieved a significant peak power increase of over 11 times, while maintaining an impressive efficiency rate exceeding 95%. The graphs below illustrate the self-phase modulated spectrum and the pulse compression achieved through our experiments.

Input Dira 200-100: 1.000 fs, 200 uJ, 20 W, 100 kHz

Output MIKS1_S: 92 fs, 190 uJ, 19 W, 100 kHz

Input spectrum vs. output spectrum

DIRA showcase graphs_spectrum_edited.jpg

Input autocorrelation vs. output autocorrelation

DIRA showcase graphs_autocorrelation_edi

Output beam profile

Output beam profile.jpg
MIKS1_S @ Dira 200-100 (Trumpf Laser)

MIKS1_XS @ Ti:Sa Laser (Simulations)

Here we show the potential performance of our MIKS1_XS module driven by a Titanium Sapphire femtosecond laser. We consider relatively short 40 fs pulses at the input of our pulse compressor. A peak power increase by a factor of 4.6 could be achieved with an efficiency of over 90%.  Essentially it means that we can use broadband dispersive dielectric mirrors in this case. The spectrum before and after the compressor as well as the theoretically compressed output pulses of 8.3 fs are shown below.  Of course, it would also be possible to have stronger or weaker self-phase modulation and this way get even shorter or longer pulses. 

Titanium Sapphire Laser: 40 fs, 5 uJ, 250 kHz

Output MIKS1_XS: 8.3 fs, 4.8 uJ, 250 kHz

Simulated Input spectrum vs. output spectrum

Ti_Sa Laser showcase graphs_spectrum_edi

Simulated Input autocorrelation vs. output autocorrelation

Ti_Sa Laser showcase graphs_autocorrelat
MIKS1_XS @ Ti:Sa Laser (Feasibility Study)
 
Dispersion Compensation for Micromachining Setup   


Here we show the performance of our MIKS1_S module driven by Carbide laser. A peak power increase by a factor of 4 could be achieved with an efficiency of 95%. The self-phase modulated spectrum and the pulse compression are shown in the graphs below. 

On top of that we compensated the addtional dispersion introduced by the optics from the micromachining setup. This way we could achieve sub 100 fs pulse duration at the actual workpiece.

Laser pulses experience chromatic dispersion, i. e. varying group velocities for different wavelengths, while propagating through material. This effect stretches the pulses in the time domain. In general, shorter pulses with a wider spectrum are more susceptible to this effect. Commonly used micromachining setups comprise multiple such elements, for example beam expanders or f-theta lenses. It is thus necessary to account for the dispersion to benefit from ultrashort laser pulses on the workpiece.

Input Carbide: 400 mW, 40 µJ, 10 kHz, 230 fs

Output MIKS1_S: 380 mW, 38 µJ, 10 kHz, 50 fs

Additional micromachining setup:

  • Beam expander

  • Galvo-Scanner

  • F-Theta-Lens

Output spectrum after  micromachining setup

Spectrum before after micromachining set

Output pulse duration after micromachining setup

Autocorrelation With Wihtout Dispersion

Output beam profile after  micromachining setup

Screenshot 2023-07-12 104123.png
Dispersion Compensation for Micromachining Setup   
bottom of page